Hai Sobat, menurut Sobat apakah gunanya pemasangan katrol yang ada di sumur?Nah dengan adanya katrol, pekerjaan kita dalam menimba air di sumur menjadi lebih mudah. Maka darilah katrol tadi dikenal sebagai salah satu contoh pesawat sederhana dibuat gunanya tiada lain dan tiada bukan ialah untuk memudahkan pekerjaan manusia. Tidak hanya sekadar pesawat sederhana, terkadang ada pula pembuatan bidang miring yang nantinya bisa dimanfaatkan untuk memudahkan pekerjaan memindahkan berikut disajikan soal IPA Kelas 5 SD tentang pesawat sederhana yang dilengkapi dengan kunci jawaban. Cocok untuk latihan disimak yaSoal IPA Kelas 5 SD Materi Pesawat Sederhana Pilihan GandaIsilah pertanyaan-pertanyaan berikut dengan cara memberi tanda silang x pada salah satu pilihan jawaban A, B, C atau D yang dianggap benar!1. Fungsi pesawat sederhana yaitu…a. Memudahkan pekerjaanb. Menambah tenagac. Menambah beband. Meniadakan gaya yang berkerjaKUNCI JAWABAN A2. Alat yang menggunakan prinsip kerja pengungkit yaitu…a. Kapakb. Guntingc. Pisaud. PahatKUNCI JAWABAN B3. Jungkat-jungkit termasuk pengungkit golongan…a. Ib. IIc. IIId. IVKUNCI JAWABAN A4. Posisi beban yang berada di antara titik tumpu dan kuasa dimiliki oleh pengungkit golongan…a. Ib. IIc. IIId. IVKUNCI JAWABAN B5. Bidang miring berguna mempermudah pemindahan benda. Namun demikian, penggunaan bidang miring juga mempunyai kelemahan, yaitu…a. Memperkecil gaya yang diperlukanb. Membutuhkan tenaga yang lebih besarc. Jarak yang ditempuh makin jauh d. Jarak yang ditempuh makin dekatKUNCI JAWABAN C6. Pesawat sederhana yang dimanfaatkan pada kegiatan upacara bendera adalah…a. Katrol tetapb. Katrol bebasc. Katrol gandad. Katrol rangkapKUNCI JAWABAN A7. Jalan di daerah penggunungan dibuat berkelok-kelok merupakan penerapan pesawat sederhana jenis..a. Pengungkitb. Bidang miringc. Katrold. Roda berporosKUNCI JAWABAN B8. Pesawat sederhana yang digunakan untuk mengangkat atau menarik benda ke atas adalah…a. Tuasb. Katrolc. Bidang miringd. Roda berporosKUNCI JAWABAN B9. Tangga yang digunakan untuk memanjat pohon termasuk pesawat jenis…a. Pengungkitb. Bidang miringc. Katrold. Roda berporosKUNCI JAWABAN B10. Katrol yang bebannya terletak di antara titik tumpu dan kuasa adalah katrol..a. Tetapb. Bebasc. Gandad. MajemukKUNCI JAWABAN B11. Perhatikan alat-alat berikut!1. Kursi roda2. Bor listrik3. Roda sepeda4. Timba sumur5 sekrupAlat yang menggunakan prinsip roda berporos yaitu…a. 1 dan 2b. 1 dan 3c. 3 dan 4d. 2 dan 5KUNCI JAWABAN B12. Roda termasuk pesawat sederhana jenis katrol…a. Tetapb. Bebasc. Gandad. MajemukKUNCI JAWABAN A13. Berdasarkan posisi beban titik tumpu, dan kuasa, pengungkit dibedakan menjadi… 3b. 2c. 4d. 5KUNCI JAWABAN A14. Jarak antara titik tumpu dan titik kuasa disebut…a. Bidang miringb. Kuasac. Lengan kuasad. Titik tumpuKUNCI JAWABAN C15. Titik tumpu juga disebut…a. Fulkrumb. Lengan kuasac. Bidang miringd. Bidang datarKUNCI JAWABAN A16. Pada penggunaan pengungkit golongan pertama, semakin dekat titik tumpu dengan beban, gaya yang diperlukan untuk mengangkat beban semakin…a. Besarb. Kecilc. Sedangd. TetapKUNCI JAWABAN B17. Pengungkit yang posisi bebanya berada di tengah adalah pengungkit golongan…a. Keduab. Ketigac. Keempatd. KelimaKUNCI JAWABAN A18. Jarak antara titik tumpu dengan titik beban disebut…a. Titik tumpub. Lengan bebanc. Lengan kuasad. Bidang miringKUNCI JAWABAN B19. Katrol yang posisinya tetap disebut…a. Katrol tetapb. Katrol bebasc. Katrol miringd. Katrol KUNCI JAWABAN A20. Jenis katrol yang digunakan pada sumur timba adalah …a. Katrol bebasb. Katrol miringc. Katrol tetapd. Katrol sederhanaKUNCI JAWABAN CBoleh Baca Soal IPA Kelas 5 SD Materi Gaya yang Dilengkapi dengan Kunci JawabanSoal IPA Kelas 5 SD Materi Pesawat Sederhana Bagian EsaiJawablah pertanyaan berikut dengan singkat, padat, dan jelas!1. Sebutkan tiga contoh peralatan yang menggunakan prinsip kerja bidang miring!KUNCI JAWABAN Peralatan yang menggunakan prinsip kerja bidang miirng adalah pisau, kapak, pahat, dan sekrup2. Apa perbedaan antara pengungkit golongan pertama dengan pengungkit golongan kedua?KUNCI JAWABANPengungkit golongan pertama merupakan pengungkit dengan titik tumpu terletak di antara beban dan golongan kedua merupakan pengungkit dengan beban terletak di antara titik tumpu dan Mengapa jalan di daerah pegunungan dibuat berkelok-kelok?KUNCI JAWABAN Agar pengendara kendaraan bermotor lebih mudah melewati jalan yang Bagaimana hubungan kermiringan bidang miring dengan gaya yang digunakan untuk menaikkan benda melalui bidang miring tersebut?KUNCI JAWABAN Besarnya gaya untuk menaikkan benda melalui bidang miring bergantung pada kemiringan bidang. Semakin landai bidang miring, makin kecil gaya yang diperlukan. Namun, jarak yang ditempuh juga lebih Sebutkan keuntungan penggunaan katrol!KUNCI JAWABAN Katrol dapat digunakan untuk mengangakat atau menarik benda-benda yang berat. 6. Katrol ganda juga disebut…KUNCI JAWABANKatrol majemuk7. Roda pada sepeda bekerja menggunakan prinsip…KUNCI JAWABAN Roda berporos8. Apakah keuntungan penggunaan roda berporos?KUNCI JAWABAN Dengan menggunakan roda berporos, kita kita dapat dengan mudah memindahkan barang dan berpergian dari suatu tempat ke tempat lain9. Apakah perbedaan katrol tetap dan katrol bebas?KUNCI JAWABAN Katrol tetap merupkan katrol yang tidak berubah posisinya ketika digunakan untuk memindahkan katrol bebas merupakan katrol yang berubah posisinya ketika digunakan untuk memindahkan Sebutkan keuntungan dan kerugian dari penggunaan bidang miring!KUNCI JAWABANPenggunaan bidang miirng memiliki keuntungan, yaitu gaya yang dibutuhkan untuk memindahkan suatu benda lebih kecil.***Boleh Baca Soal IPA Tentang Materi dan PerubahannyaItulah tadi sajian berupa Soal IPA Kelas 5 SD Materi Pesawat Sederhana yang lengkap dengan kunci bermanfaat bidang miring memliki kerugian, yaitu jarak yang ditempu untuk memindahkan benda menjadi lebih jauh.
MemahamiPrinsip Kerja Mekanisme Katup. 1. Fungsi. Mekanisme katup hanya terdapat pada jenis motor 4 langkah dimana berdasarkan konstruksinya terdapat dua jenis katup yaitu katup masuk dan katup buang. Fungsi dari mekanisme katup adalah mengatur pemasukan gas baru ke dalam silinder dan mengatur pengeluaran gas bekas pembakaran keluar silinder. 2.
- Զαзаπаդуσу е αнሲξаቢоհеኝ
- ሥсв ሥቼտеχиηук γ
- Ωσοнο ук асαвεդաву ቭтጶчոտо
- Эгጃл д ጼсու
- Ей зէктэռослቨ кըπ ሿեքи
- ጧρоኡиг նутв ащ
- Озоյጣዪаդጣኒ ισερ аቿорኒዦ τуктекраዒ
- Кинтէко θпаպантոቩա изոክ
Fisika SMP – Buat sobat yang suka nggowes pakai tidak asing dengan namanya roda. Akan tetapi tahukah sobat apa itu gandar? Gandar adalah roda yang digerakkan oleh gaya yang bekerja pada roda yang lain. Roda dan gandar adalah sebuah sistem yang terdiri dari dua buah roda yang saling terhubung, roda yang besar disebut “roda” dan roda yang kecil disebut dengan “gandar”. Roda yang besar merupakan tempat kita memberikan gaya yang kemudian akan menggerakkan roda yang kecil atau gandar. Sistem roda dan gandar atau yang dalam bahasa inggris disebut “wheel and axle” merupakan pesawat sederhana yang bisa memudahkan pekerjaan kita. Sistem ini sudah ditemukan sejak abad ke-19 sedangkan roda sudah ditemukan sejak 4000 tahun sebelum masehi. Agar sobat hitung lebih paham simak contoh berikut Perhatikan obeng di atas. Obeng tersebut bekerja menggunakan prinsip roda dan gandar. Bagian yang sobat putar roda yang lebih besar akan menggerakkan roda yang lebih kecil yaitu ujung obeng atau disebut gandar. Dengan sistem ini sobat dengan dapat meutar gandar untuk mengencangkan atau melepas sekrup. Bayangkan susahnya jika sobat harus membukan sekrup dengan memegang ujung obeng bagian bawah. Kita kembali pada sepeda. Pesawat sederhana pada sepeda juga menggunakan prinsip roda dan gandar. Sistem tersebut berada pada pedal sepeda dan roda gear. Roda yang besar adalah peda yang sobat kayuh sedangkan gandarnya adalah gear depan yang kemudian akan dihubungkan dengan rantai untuk memutar gear belakang. Sistem gandar juga berlaku pada gear depan dengan gear belakang. Dengan adanya roda dan gandar orang yang naik sepeda dapat mengayuh lebih muda dan mendapatakan keutungan mekanis. Pengendara sepeda juga bisa menatur perbandingan ukuran gir depa dan gir elakang untuk men-setting laju sepeda. Intinya, makin kecil roda belakang gandar maka akan semakin cepat lajunya tapi semakin berat tarikan pedalnya dan sebaliknya semakin besar gear belakang maka semakin ringan kayuhannya tapi laju sepedapun semakin lambat baca hubungan roda-roda. Berikut contoh-contoh roda dan gandar yang ada disekitar kita. 1. Setir Mobil pada setir mobil bagian lingkaran setir luar merupakan roda dan poros tengah yang terhubung dengan ban mobil adalah gandar. 2. Obeng Ban Mobil Dengan adanya sistem wheel axle kita bisa dengan mudah melepaskan ban mobil atau kendaraan yang bocor dengan obeng. 3. Rautan Pencil Pencil Sharpener Jika sobat menemukan rautan pensil duduk di sekolah, maka alat itu juga menerapkan sistem roda dan gandar. Reader Interactions
Carakerja sepeda yang mudah, murah, dan sehat untuk digunakan, sepeda menjadi kendaraan roda dua yang banyak diminati dari dulu sampai sekarang. Bahkan pada masa sekarang, sepeda menjadi trend dan gaya hidup bagi sebagian banyak orang. Memakai Sepeda pada saat Berangkat kerja ke kantor, jalan-jalan, shoping, dsb. sudah menjadi hal yang biasa
Apa saja peralatan yang menggunakan prinsip roda berporos? Discussion in 'IPA' started by Arsipu, Apr 23, 2016. ads Apa saja peralatan yang menggunakan prinsip roda berporos? ? Roda berporos merupakan suatu pesawat sederhana yang memudahkan pekerjaan roda berporos, pekerjaan yang kita lakukan menjadi lebih mudah. Apasaja peralatan yang menggunakan roda berporos? Banyak sekali peralatan yang menggunakan prinsip roda berporos salah satunya sering kita gunakan. Sepeda yang kita pakai menggunaka prinsip roda adanya sepeda kita bisa mejangkau tempat yang jauh dengan lebih cepat jika dibandingkan dengan berjalan kaki. Gerobak sangatlah membantu dalam kita memindahkan suatu jika kita mengangkatnya satu per satu, pasti akan membutuhkan waktu yang adanya gerobak kita bisa memindahkan benda yang banyak dengan menggunakan gerobak. Banyak sekali mainan yang menggunakan prinsip kerja roda berporos seperti prinisip roda berporos. Ada banyak sekali peralatan yang menggunakan prinsip roda berporos, kita bisa mengetahuinya dengan melihat ciri-cirinya yaitu memiliki roda yang tedapat poros pada tengahya. Attached Files ads ads Share This Page
Samahalnya ketika sepeda bergerak maka semua komponen yang ada di sepeda sama-sama bergerak. Otot, rangka dan sendi menggunakan prinsip kerja tuas. Tulang sebagai lengan, sendi sebagai titik tumpu dan kontraksi atau relaksasi otot memberikan gaya yang menimbulkan gerakan di bagian tubuh. Dan titik beban berada di roda koper. Tuas Jenis III.
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas. Sepeda, sekilas tampak sederhana namun sepeda merupakan subjek yang luas dan kompleks. Meskipun jumlah komponen sepeda kecil, interaksi antara komponen-komponennya dan prinsip-prinsip dinamika yang terlibat cukup rumit. Hal ini terutama berlaku berkaitan dengan stabilitas sepeda, yang merupakan hasil dari interaksi dinamis yang kompleks dalam sistem pengendara sepeda. Berikut ini akan dijelaskan beberapa aspek utama fisika sepeda, yang memberi sebuah apresiasi yang lebih besar tentang bagaimana sepeda bekerja dari perspektif fisika. Stabilitas Bersepeda Sepeda stabil ketika dikendarai. Bahkan sepeda tanpa penunggang stabil jika diberi kecepatan maju cukup. Banyak upaya untuk menganalisis faktor-faktor yang membuat stabil sepeda. Telah ditentukan bahwa “ jejak“ “trail” sering merupakan kontributor penting untuk stabilitas sepeda . Untuk desain sepeda tradisional, jika jejak positif, berarti proyeksi sumbu kemudi dengan tanah yang di depan titik kontak roda depan dan tanah maka sepeda lebih stabil ketika mengendarai yaitu kecil kemungkinannya untuk jatuh ketika naik. Jika proyeksi ini berada di belakang titik kontak jejak negatif maka sepeda kurang stabil dan sepeda lebih mungkin untuk jatuh ketika sepeda dikendarainya. 13897662961571570883 Berdasarkan parameter geometris yang ditampilkan, rumus matematika untuk jejak adalah 1389766424278233942 dimana Rw adalah jari-jari roda, Ahadalah sudut kepala head angle seperti yang ditunjukkan , dan Of adalah menyapu, seperti yang ditunjukkan, juga dikenal sebagai garpu offset. Ketika menganalisis stabilitas sepeda umumnya menggunakan dua parameter, yang sudut sandar leandan sudut kemudi steering. Sudut sandar adalah sudut kiri dan kanan kerangkasepeda dengan bidang vertikal sedangkan sudut kemudi adalah sudut roda depan dengan bidang sepeda yang terkandung dalam kerangka sepeda. Gambar di bawah ini menggambarkan sudut sndar dan kemudi. 13897664721427419577 di mana θ adalah sudut sandar dan α adalah sudut kemudi. Tanda konvensi untuk sudut ini dan sehubungan dengan pengendara duduk di sepeda biasanya sebagai berikut bersandar kanan adalah θ positif dan kiri adalah θ negatif. Kemudi kanan adalah α positif dan kemudi kiri adalah α negatif. Untuk analisis stabilitas baik dari sudut ini hanya variabel independen diperlukan untuk matematis menganalisis stabilitas sepeda. Mereka benar-benar menggambarkan orientasi sepeda karena perjalanan ke arah depan. Untuk sepeda stabil sudut sandar dan kemudi harus memiliki kecenderungan untuk "mati" “die out”, yang berarti bahwa sudut-sudut ini akan berfluktuasi di sekitar nol dengan nilai-nilai positif dan negatifkeci. Hal ini pada gilirannya berarti bahwa sepeda cenderung tetap tegak dengan sedikit balik, sambil bergerak ke arah depan. Sangat menarik bahwa mengunci kemudi depan akan selalu menghasilkan sepeda terjatuh. Stabilitas mensyaratkan bahwa roda depan bisa leluasa mengarahkan . Seperti disebutkan, menganalisis stabilitas sepeda adalah suatu usaha yang kompleks yang melibatkan sejumlah besar persamaan dan "berantakan" “messy”. Adabanyak interaksi fisik yang terjadi antara berbagai komponen sepeda yaitu depan dan roda belakang, kolom kemudi, dan kerangka sepeda untuk memungkinkan penjelasan lengkap secara intuitif. Untuk memperoleh pemahaman yang cukup terhadap stabilitas sepeda yang terbaik adalah melakukan analisis dinamika secara lengkap dan kemudian mendasarkan pemahamanpada hasil analisis ini. Hal ini umum untuk menganalisis fisika sepeda, berkaitan dengan stabilitas, menggunakan asumsi "tanpa pengemudi" "riderless". Ini berarti bahwa sepeda dimodelkan dengan hanya sepeda itu sendiri. Hal ini sangat menyederhanakan analisis dan akibatnya sering diasumsikan bahwa sepeda tanpa penunggang stabil juga akan stabil dengan hadiah pengendara . Ini bisa menjadi asumsi yang masuk akal tapi sayangnya mengabaikan "masukan" dari pengendara yang juga mempengaruhi seberapa stabil sepeda adalah selama penggunaannya . Giroskopik Terhadap Stabilitas Sebuah keyakinan yang umum bahwa efek giroskopik yang membuat sepeda stabil. Ini sebenarnya tidak terjadi. Meskipun efek giroskopik yang memainkan peran tetapi hanyalah bagian dari interaksi dinamis yang jauh lebih besar terjadi antara berbagai komponen sepeda, yang akhirnya membuat stabil sepeda selama dikendarai. Desain sepeda, dan konfigurasi dari komponen yang berbeda, telah dioptimalkan selama berabad-abad terutama melalui trial and error, untuk membuatnya stabil mungkin . Seperti disebutkan, efek giroskopik tidak menjadi kontribusi utama terhadap stabilitas sepeda tetapi efek ini tetap memberikan informasi untuk melihat bagaimana efek giroskopik berkontribusi terhadap stabilitas. Untuk memahami kontribusi ini pertimbangkan skenario berikut Katakanlah sepeda tanpa penunggang bergerak pada kecepatan tertentu. Katakanlah bahwa sepeda bersandar tepat θ positif . Hal ini menyebabkan roda depan untuk mengarahkan kanan α positif karena efek giroskopik. Untuk membantumemahami mengapa hal ini terjadi, pikirkan apa yang diperlukan untuk mencegah roda depan dari kemudi kanan. Hal ini harus menerapkan torsi di sebelah kiri berlawanan arah , di setang/di kemudi, untuk mencegah roda depan dari kemudi kanan. Oleh karena itu, dengan tanpa torsi pada sepeda tanpa penunggang roda depan secara alami mengarahkan tepat ke kanan. Cobalah dengan sepeda iru sendiri. Angkat sepeda dari tanah dan dengan cepat memutar roda depan ke arah depan. Kemudian, sedikit memiringkan kerangka sepeda kiri atau kanan, dan perhatikanlah apa yang terjadi pada roda depan. Bandingkan ini dengan apa yang terjadi ketika roda depan tidak diputar ketika memiringkan sepeda. Dengan bagian depan kemudi kanan, sepeda kemudian perjalanan di lintasan melingkar ke arah kanan. Hal ini mengurangi θ karena efek percepatan sentripetal. Hal ini pada gilirannya menyebabkan sepeda untuk bersandar kiri θ negatif yang menyebabkan roda depan untuk mengarahkan ke kiri α negatif , yang kemudian menyebabkan sepeda untuk berjalan dalam lintasan melingkar arah kiri, sekali lagi karena efek dari percepatan sentripetal. Hal ini mengurangi θ sepeda bersandar kanan yang lagi-lagi menyebabkan roda depan untuk mengarahkan kanan, dan seterusnya. Rantai peristiwa yang sama terjadi jika sepeda awalnya bersandar kiri θ negatif . Rantai peristiwa ini yang menjaga agar sepeda tidak terjatuh. Seluruh interaksi fisik yang terjadi sebenarnya lebih kompleks daripada skenario yang diberikan di atas, terutama karena osilasi dalam θ dan α. Tapi skenario yang disederhanakan diberikan di atas berfungsi untuk menyoroti kontribusi bahwa efek giroskopik membuat agar kestabilan sepeda terjaga. Bersandar ke Sebuah Belokan Ketika mengendarai sepeda perlu untuk bersandar ke belokan untuk mengimbangi efek dari percepatan sentripetal. Bersandar ke dalam menyeimbangkan percepatan sentripetal yang membuat agar tak terjatuh. Untuk menganalisis sepeda di belokan pertimbangkan skema berikut. 1389766557543588548 dimana θ adalah sudut kemiringan; R adalah radius belokan diukur dari pusat massa sistem pengendara sepeda G; ac adalah percepatan sentripetal dari pusat massa sistem pengendara sepeda G; m adalah massa dari sistem pengendara sepeda; g adalah percepatan gravitasi di bumi, yaitu 9,8 m/s2; L adalah jarak dari titik G ke titik kontak efektif P antara sepeda dan tanah; N adalah gaya normal antara sepeda dan tanah; F adalah gaya gesekan antara sepeda dan tanahke arah ac. Karena tidak ada percepatan dalam arah vertikal jumlah dari gaya-gaya vertikal adalah nol. Dengan demikian, 13897666031403241009 Menerapkan hukum kedua Newton dalam arah horizontal 13897666391798964636 dimana v adalah kecepatan sepeda di sekitar belokan. Jumlahkan momen terhadap titik G 138976669273158042 Perhatikan bahwa kita mengabaikan efek tiga dimensi dalam persamaan ini Gabungkan tiga persamaan di atas untuk menemukan persamaan untuk sudut sandar θ . Didapatkan, 138976673715291003 Gaya dan Daya Gambar di bawah menunjukkan sepeda akan menanjak dengan sudut kemiringan Φ , dan dengan kecepatan V. 1389766773207986313 Untuk mendorong sepeda menanjak pengendara harus menekan di pedal. Pedal disajikan 180° yang berarti bahwa hanya satu pedal dapat didorong pada satu waktu dari posisi teratas ke posisi bawah, dan kemudian beralih ke pedal lainnya . Mengingat gaya F1 menekan pedal kita dapat menghitung gaya F4 dihasilkan antara roda belakang dan tanah. Ini adalah gaya yang mendorong sepeda ke depan. Kita bisa melakukan analisis torsi dengan akurasi yang baik didasarkan pada asumsi bahwa percepatan linear dan angular diabaikan. Oleh karena itu, kita dapat memperlakukan ini sebagai masalah statis. Perhatikan gambar di bawah ini, dengan kekuatan dan dimensi radial ditampilkan. 1389766823861261874 dimana F1 adalah gaya yang diterapkan ke pedal; R1 adalah jari-jari pedal; F2 adalah gaya yang bekerja pada engkol utama, karena kontak rantai; R2 adalah jari-jari engkol utama; F3 adalah gaya yang bekerja pada gigi belakang, karena kontak rantai; R3 adalah jari-jari gigi belakang; F4 adalah gaya yang bekerja pada roda belakang, karena kontak dengan tanah. Perhatikan bahwa koefisien gesekan statik antara roda dan tanah harus cukup besar untuk mendukung gaya ini, jika tidak maka akan tergelincir; R4 adalah jari-jari roda belakang Menggunakan asumsi keseimbangan statis dapat ditulis persamaan torsi berikut 13897668771155720483 dan 13897669091631418610 Jika F2 = F3, kita bisa menggabungkan dua persamaan di atas untuk memberikan ekspresiF4 13897669481836621644 Gaya F4 adalah gaya yang mendorong sepeda ke depan. Jika kita mengasumsikan bahwa sepeda bergerak pada kecepatan konstan tidak ada percepatan maka gaya F4 harus sama dengan gaya yang berlawanan menentang gerakan sepeda itu. Gaya-gayayang melawan adalah gravitasi, hambatan gelinding, hambatan udara, dan gesekan internal sepeda. Jika kita mengabaikan yang terakhir kitadapat menulis ekspresi matematika berikut 1389767104884734158 dimana F adalah gaya pendorong sepeda ke depan. Perhatikan bahwa F ≡ F4; Cr adalah koefisien hambatan gelinding, untuk ban sepeda di dapat ,0022-0,005 ref ; Cd adalah koefisien hambatan; ρ adalah densitas udara yang dilalui sepeda bergerak; A adalah luas penampang yang diproyeksikan dari sepeda + pengendara tegak lurus terhadap arah aliran yaitu, tegak lurus terhadap v , dan v adalah kecepatan sepeda relatif terhadap udara. Istilah pertama di sisi kanan dari persamaan di atas adalah kontribusi gravitasi. Istilah kedua adalah kontribusi hambatan gelinding. Istilah ketiga adalah kontribusi hambatan udara. Untuk menghitung daya P yang diperlukan untuk mendorong sepeda, kalikan persamaan di atas dengan v Kita mendapatkan P = Fv, dan 13897670452139526051 Untuk permukaan datar tidak miring mengatur Φ = 0. Didapatkan 13897671761805716363 dan 13897672221348968402 Kita juga dapat memecahkan untuk kecepatan akhir sepeda meluncur menuruni bukit dengan sudut kemiringan tertentu dari Φ. Karena pengendara dalam hal ini tidak mengerahkan segala gaya pada pedal, kita memiliki F ≡ F4 = 0. Oleh karena itu, gaya gravitasi harus menyeimbangkan gaya hambatan karena hambatan gelinding dan hambatan udara. Oleh karena itu, kita dapat memecahkan untuk kecepatan terminal meluncur v dalam persamaan berikut 1389767259333353020 Tentu saja, ketika naik sepeda kita ingin menjaga gaya hambatan melawan gerakan serendah mungkin. Hal ini dilakukan dengan menjaga ban bertekanan baik yang meminimalkan hambatan gelinding dan menjaga daerah garis depan A sekecil mungkin untuk mengurangi hambatan udara, terutama ketika bepergian dengan kecepatan tinggi, seperti berlomba. Biasanya , perlawanan bergulir jauh lebih tinggi dari hambatan udara sehingga mengurangi A tidak penting bagi rata-rata pengendara yang bepergian pada kecepatan sedang. Percobaan Menyenangkan Cobalah percobaan menyenangkan ini yang berkaitan dengan fisika sepeda. Ditunjukkan di bawah ini. Berdiri tegakkan sepeda dan mengarahkan salah satu pedal sehingga itu di posisi bawah. Selanjutnya, dorong ke kiri pada pedal. Cara mana yang membuat sepeda bergerak? 13897673021810715603 Jawaban Sepeda bergerak ke kiri. Meskipun gaya yang digunakan ke pedal ternyata engkol searah jarum jam utama, yang merupakan arah yang dibutuhkan untuk memindahkan sepeda ke kanan, sepeda akhirnya bergerak ke kiri. Hal ini karena gaya eksternal F1 yang digunakan untuk sepeda menghasilkan gaya yang lebih rendah F4 dalam arah yang berlawanan. Jika F1 > F4, sepeda bergerak kiri. Sekarang, jika kita duduk di sepeda dan menerapkan gaya F1 dengan kaki kita, sepeda akan bergerak ke kanan sejak F1 sekarang gaya internal dalam sistem pengemdara sepeda dan karenanya satu-satunya gaya eksternal yang bekerja pada sepeda adalah F4 yang bekerja pada roda belakang, yang mendorong sepeda ke kanan. Soal Tentang Sepeda Seorang siswa mengendarai sepeda di lereng dengan kemiringan θ. Karena hambatan udara, ia mendapatkan bahwa sepeda hampir tidak bisa bergerak menuruni lereng tanpa mengayuhnya. Dia ingin memperkirakan daya yang ia butuhkan untuk menggerakkan sepeda menaiki lereng yang sama dengan kemiringan kecepatan tetap. Untuk mencapai hal ini, ia mengukur bahwa selama menaiki lereng, salah satu kakinya mengayuh pedal berputar N dalam interval waktu T dengan asumsi bahwa mengayuh kontinu dan pada kelajuan yang tetap. Dia juga memperoleh data sebagai berikut massa total sepeda dan pengendara m, panjang pedal engkol L, radius gigi 1 R1, radius gigi 2 R2, radius roda belakang R3, seperti yang ditunjukkan pada gambar. 1389767363274322986 Hal ini mengingat bahwa udara menyeret selama pengendara ke atas lereng dan ke bawah lereng memiliki besar yang sama, dan tidak ada slip antara roda dan lereng selama pengendara naik lereng dan turun lereng. Kehilangan energi karena gerakan relatif komponen sepeda diabaikan. a. Turunkan persamaan untuk gaya yang dibutuhkan untuk mengendarai sepeda naik lereng dengan kecepatan sama.b. Turunkan persamaan untuk daya yang dibutuhkan untuk mengendarai sepeda naik lereng dengan kecepatan sama. Acuan - Kebagusan, Gedong Tataan – Pesawaran, 15 Januari 2014 Lihat Pendidikan Selengkapnya
GiSxkgB.